The main goal of this challenge is to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a supervised learning learning problem in that a training set of labelled images is provided. The twenty object classes that have been selected are:
There are three main object recognition competitions: classification, detection, and segmentation, a competition on action classification, and a competition on large scale recognition run by ImageNet. In addition there is a “taster” competition on person layout.
Please use the following citation when referencing the dataset:
@misc{pascal-voc-2012,
author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.",
title = "The {PASCAL} {V}isual {O}bject {C}lasses {C}hallenge 2012 {(VOC2012)} {R}esults",
howpublished = "http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html"}