graviti
ProductOpen DatasetsApps MarketSolutionsResourcesCompany
148
0
0
BigEarthNet
General
Discussion
Code
Activities
c77ab536-8cd1-11eb-88ae-0e1f58d5e9a9
b9e1da3·
Jun 20, 2021 7:38 AM
·1Commits

Overview

The BigEarthNet archive was constructed by the Remote Sensing Image Analysis (RSiM) Group and the Database Systems and Information Management (DIMA) Group at the Technische Universität Berlin (TU Berlin). This work is supported by the European Research Council under the ERC Starting Grant BigEarth and by the German Ministry for Education and Research as Berlin Big Data Center (BBDC).

BigEarthNet is a new large-scale Sentinel-2 benchmark archive, consisting of 590,326 Sentinel-2 image patches. To construct BigEarthNet, 125 Sentinel-2 tiles acquired between June 2017 and May 2018 over the 10 countries (Austria, Belgium, Finland, Ireland, Kosovo, Lithuania, Luxembourg, Portugal, Serbia, Switzerland) of Europe were initially selected. All the tiles were atmospherically corrected by the Sentinel-2 Level 2A product generation and formatting tool (sen2cor). Then, they were divided into 590,326 non-overlapping image patches. Each image patch was annotated by the multiple land-cover classes (i.e., multi-labels) that were provided from the CORINE Land Cover database of the year 2018 (CLC 2018).

BigEarthNet is significantly larger than the existing archives in remote sensing and opens up promising directions to advance research for the analysis of large-scale remote sensing image archives. It is also very convenient to be used as a training source in the context of deep learning for knowledge discovery from big archives in remote sensing.

Citation

Please use the following citation when referencing the dataset:

@inproceedings{sumbul2019bigearthnet,
  title={Bigearthnet: A large-scale benchmark archive for remote sensing image understanding},
  author={Sumbul, Gencer and Charfuelan, Marcela and Demir, Beg{\"u}m and Markl, Volker},
  booktitle={IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium},
  pages={5901--5904},
  year={2019},
  organization={IEEE}
}
🎉Many thanks to Graviti Open Datasets for contributing the dataset
Basic Information
Application ScenariosNot Available
AnnotationsNot Available
TasksNot Available
LicenseCustom
Updated on2021-01-20 03:21:57
Official Websitehttp://bigearth.net/
Metadata
Data TypeNot Available
Data Volume590,326
Annotation Amount0
File Size0.00B
Copyright Owner
ERC(European Research Council)
Annotator
Unknown